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Abstract. Using some different Miura-type transformations, a C-integrable ordinary differential
equation, the Riccati equation, is deformed to some different S-integrable models such as the
(1 + 1)-dimensional and(2 + 1)-dimensional sinh–Gordon equations and Mikhailov–Dodd–
Bullough equations.

1. Introduction

In recent years, the study of both the S-integrable (integrable via an appropriate spectral
transform) and C-integrable (solvable via an appropriate change of variables) models
has attracted much attention from mathematicians and physicists [1, 2]. To solve a
nonlinear problem, the first two things one wishes to know are: (i) Whether the
problem can be changed to a linear one directly by using some suitable transformations?
(ii) Whether a higher-dimensional problem can be (partially) solved by means of some
lower-dimensional ones? For the first problem, many physically significant equations are
solved satisfactorily. Some C-integrable models have been directly changed to linear ones,
for example the Burgers equation and the Liouville equation have been changed to the
linear heat conductive equation and the linear wave equation, respectively, by means of
the Cole–Hopf transformation. Many S-integrable models, such as the Korteweg–de Vries
(KdV), Kadomtsev–Petviashvili (KP), sine–Gordon (sG) and nonlinear Schrödinger (NLS)
equations, are solved with the help of some linear spectral problems. The second problem
has been solved partially by using the symmetry constraint (or reduction) methods. The
classical and non-classical Lie symmetry reduction approach has been used to reduce both
integrable and non-integrable models [3–5]. Using the generalized local and non-local
symmetry constraint method (nonlinearization approach of the Lax pairs), many higher-
dimensionalintegrablemodels can be solved by some lower-dimensional integrable systems
[6–8].

In this paper, we are interested in two related problems: (i) Can we change a C-integrable
model to an S-integrable model? (ii) May a lower-dimensional integrable model be
deformed to those of higher dimensions? Fortunately, the answer to these two problems
is also positive. In section 2 of this paper, a brief report of the general theory related to
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transformations between two equations is sketched. In section 3, we deform the following
one-dimensional Riccati equation

φt = φ2 (1)

(which is C-integrable of course) to some(1+ 1)- and (2+ 1)-dimensional sinh–Gordon
(ShG) type equations. Section 4 is devoted to the study of the deformation of the same
equation (1) to the(1+ 1)-dimensional and (2+1)-dimensional Mikhailov–Dodd–Bullough
(MDB) equations. Section 5 is a summary and discussion.

2. General theory

If the following lower-dimensional evolution equation

φt = K(φ) (2)

is integrable (we may suppose further that it is C-integrable), we may change it to some
other equations by using some complicated transformations, for example

B(φ, v) = 0 or φ = ϕ(v). (3)

Using the transformation relation (3) and theφ evolution equation (2), the relatedv equation
can be obtained in the following way: differentiating the transformation relation (3) with
respect tot at first, we have

B ′φφt + B ′vvt = 0 or φt = ϕ′vvt (4)

whereB ′φ , B ′v andϕ′v are partial linearized operators ofB andϕ, say

B ′φf = lim
ε→0

d

dε
B(φ + εf ) (5)

for arbitraryf . Now substituting (2)–(4) yields thev evolution equation

vt = −B ′−1
v B

′
φK(φ)|φ=ϕ(v) or vt = ϕ′−1

v K(φ)|φ=ϕ(v) (6)

whereB ′−1
v andϕ′−1

v are the inverse operators ofB ′v andϕ′v.
The answer to the question (ii) can be verified from the above general discussion,

because if the dimension of the transformation relation (3) is higher than that of the original
evolution equation (2), the result equation must possess higher dimensions. Furthermore,
it is also possible to answer question (i) from the above discussion: if some differential
operators are included in the transformation relation (3), some integral operators must be
included in the inverse operatorB ′−1

v and the result equation may be S-integrable even if
the original equation is C-integrable. To see the conclusion more clearly, we prefer to turn
to some concrete examples in the following sections.

3. ShG extensions deformed from the Riccati equation

3.1. (1+ 1)-dimensional ShG equation

It is well known that to solve the KdV equation,

ut + 6uux + uxxx = 0 (7)

the Miura transformation (MT) [9]

u = − 1
2vxx − 1

4v
2
x (8)
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plays an important role. The MT (8) changes the solutions of the potential mKdV equation

vt + vxxx − 2v3
x = 0 (9)

to those of the KdV equation (7). Taking a Cole–Hopf transformation (CHT)vx = (lnψ)x
(8) leads to the linear spectral problem of the KdV equation (the spectral parameter can be
added into the problem simply by replacingu by u− λ thanks to the Galileo invariance of
the KdV equation). On the other hand, if we take an alternative transformation

v = lnφx (10)

(8) becomes

u = −1

2

φxxx

φx
+ 1

4

(
φxx

φx

)2

(11)

and the KdV equation (7) is transformed to its Schwarz form [10]

φt

φx
+ {φ; x} = 0 (12)

where the Schwarz derivative{φ; x} is defined as

{φ; x} = φxxx

φx
− 3

2

(
φxx

φx

)2

. (13)

Cancellingu from (8) and (11), we get a suitable candidate for deforming one integrable
model to another

φxxx

φx
− 1

2

(
φxx

φx

)2

− vxx − 1

2
v2
x ≡ B1(φ, v) = 0. (14)

Now we apply the MT related transformation (14) to the Riccati equation (1).
Differentiating (14) with respect tot and using the Riccati equation (1), we get

(∂x + vx)vxt = 4φxx. (15)

From (14), one can easily expressφx by v; the result reads

φx = ev
(
C2+ C1

∫ x

e−v(x
′) dx ′

)2

(16)

whereC1 andC2 are two arbitrary functions oft . Substituting (16) into (15) and solving
for vxt leads to the first type of deformed equation of the Riccati equation

vxt = 2C2
2 ev − C3 e−v + 4 e−vC1

[
C2

(∫ x

ev(x
′) dx ′ + e2v

∫ x

e−v(x
′) dx ′

)
+C1

(∫ x

ev(x1)

∫ x1

e−v(x
′) dx ′ dx1+ e2v

∫ x

e−v(x1)

∫ x1

e−v(x
′) dx ′ dx1

)]
(17)

with C3 being a further arbitrary function oft . Taking the following further transformations

w = v + ln

(
C2

√
2

C3

)
(18)

τ =
∫ t √

2C3(t ′)C2(t
′) dt ′ (19)
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(17) can be recast in the form

wxτ = sinhw + A(τ)
(

e−w
∫ x

ew(x
′) dx ′ + ew

∫ x

e−w(x
′) dx ′

)
+B(τ)

(
e−w

∫ x

ew(x1)

∫ x1

e−w(x
′) dx ′ dx1+ ew

∫ x

e−w(x1)

∫ x1

e−w(x
′) dx ′ dx1

)
(20)

with

A(τ) = 2

√
2

C3
C1

∣∣∣∣
t=τ−1(τ )

B(τ) = 4
C2

1

C3

∣∣∣∣
t=τ−1(τ )

. (21)

When we take the arbitrary integral functionC1 = 0 (A(τ) = B(τ) = 0), (20) is the well
known ShG equation. The integrability of (20) is obvious not only because it is obtained
from the deformation of the Riccati equation (1) but also because (20) is really a non-local
flow equation of the potential mKdV equation. It is known that [11]

K
(1)
−1 ≡

∫ x

sinhw(x ′) dx ′ (22)

K
(2)
−1 ≡

∫ x
(

e−w(x1)

∫ x1

ew(x
′) dx ′ + ew(x1)

∫ x1

e−w(x
′) dx ′

)
dx1 (23)

K
(3)
−1 ≡

∫ x
(

e−w(x2)

∫ x2

ew(x1)

∫ x1

e−w(x
′) dx ′ dx1

+ew(x2)

∫ x2

e−w(x1)

∫ x1

e−w(x
′) dx ′ dx1

)
dx2 (24)

are all symmetries of the potential mKdV equation with fieldw.
If we want only to obtain the ShG equation from the Riccati equation, it is enough to

select a special case for the integral functions

C1 = 0 C2
2 = 1

2 C3 = 1

in (17).
It is also known that the usual ShG equation is S-integrable [2] rather than C-integrable.

The reasons that one can deform a C-integrable model (1) to S-integrable ones (say, ShG
equation) are: (i) there are some possible C-integrable reductions of an S-integrable model;
(ii) the deformation relations (say, equation (14)) may be non-invertable if some differential
operators are included.

3.2. (2+ 1)-dimensional ShG equation

There are different types of extensions of the Miura transformation in high-dimensions.
Using these different types of Miura transformations to deform the Riccati equation (1),
we can obtain different types of ShG extensions. Here we write down only one special
example.

One of the simple significant(2+1)-dimensional extensions of the Miura transformation
may have the form

u = −1

2
vxx − 1

4
v2
x − e−2v

(∫ x

vy ev dx ′
)2

+ 1

2

∫ x
(

e−v
∫ x

1
vy ev dx ′

)
y

dx1. (25)
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If using transformation (8) on the above equation, we have

u = −1

2

φxxx

φx
+ 1

4

(
φxx

φx

)2

− φ
2
y

φ2
x

+ 1

2

∫ x
(
φy

φx

)
y

dx ′. (26)

By means of the standard singularity analysis approach [10], one can prove that the
transformation (26) transforms the KP equation to its Schwarts form (up to a transformation
kernel).

As previously shown, cancellingu from (25) and (26) yields an appropriate deformation
relation

−vxx − 1

2
v2
x − 2 e−2v

(∫ x

vy ev dx ′
)2

+
∫ x

(
e−v

∫ x1

vy ev dx ′
)
y

dx1

+φxxx
φx
− 1

2

(
φxx

φx

)2

+ 2
φ2
y

φ2
x

−
∫ x

(
φy

φx

)
y

dx ′ = 0 (27)

for the Riccati equation. It is obvious that whenv (and thenφ) is y-independent, equations
(25), (26) and (27) are reduced back to (8), (11) and (14), respectively.

Now we can use the(2+ 1)-dimensional transformation relation (27) to deform the
same Riccati equation (1) to a(2+ 1)-dimensional sinh–Gordon equation.

In order to write the final result in differential form we introduce two auxiliary fields
ψ(x, t) andr(x, t) as

ψx = φy

φx
(28)

rxx + rxvx = vy
(

i.e. rx = e−v
∫ x

vy ev dx ′
)
. (29)

Substituting (28) and (29) into (27) yields

−vxx − 1

2
v2
x − 2r2

x + ry +
φxxx

φx
− 1

2

(
φxx

φx

)2

+ 2ψ2
x − ψy = 0. (30)

As in the derivation of the(1+ 1)-dimensional ShG equation, differentiating (27) (or
(30)) with respect to timet and using the Riccati equation (1) yields

(∂x + vx)(vxt − 1
2C1 e−v)− 4(rxrxt − ψxψxt )+ ryt − ψyt + 4φxx (31)

where a term with arbitrary functionC1 ≡ C1(y, t) has been added because(∂x+vx) e−v ≡
0. Equation (31) along with (28)–(30) is really a(2+ 1)-dimensional ShG extension.

For clarification, we rewrite (28)–(31) in an alternative form
(∂x + vx)(vxt − C1 sinhv)− 4(rxrxt − ψxψxt )+ ryt − ψyt
+(4vxh2+ 8hhx + C1vx) ev = 0

rxx + rxvx − vy = 0
ψxx + ψx(v + 2 lnh)x − (v + 2 lnh)y = 0
hxx + hxvx − hr2

x + 1
2hry + hψ2

x − 1
2hψy = 0

(32)

by using the transformation

φx = h2 ev. (33)

It is clear that when the fields arey-independent,r = ψ = 0, h = h(t) = √C1/2,
the (2+ 1)-dimensional ShG equation (32) reduces back to the(1+ 1)-dimensional ShG
equation.

As in the(1+1)-dimensional case, the(2+1)-dimensional ShG equation (32) obtained
from the deformation of the Riccati equation is also S-integrable and it is a variant form of
the negative KP equation [12].
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4. MDB extensions deformed from the Riccati equation

4.1. (1+ 1)-dimensional MDB equation

In the (1+ 1)-dimensional case, in addition to the SG (or ShG) and Liouville equations,
there is another Klein–Gordon-type integrable model, the MDB equation, with spacetime
symmetric form. It is interesting that it can also be obtained from the deformation of the
Riccati equation.

Now we take a similar deformation relation as (14)

φxxx

φx
− vxx − v2

x ≡ B2(φ, v) = 0. (34)

The only difference between (34) and (14) is some constant coefficients of the transformation
relations.

Differentiating (34) with respect tot and using the Riccati equation (1) again, we obtain

(∂x + 2vx)vxt = 6φxx. (35)

The general solution of (34) now reads

φx = ev
(
C2+ C1

∫ x

e−2v(x ′) dx ′
)

(36)

with C1 andC2 being two arbitrary functions oft . Substituting (36) into (35) and solving
for vxt leads to a MDB-type equation

vxt = C3 e−2v + 2C2 ev + 2C1

(
ev
∫ x

e−2v(x ′) dx ′ + 2 e−2v
∫ x

ev(x
′) dx ′

)
(37)

with C3 being a further arbitrary function oft .
When we takeC1 = 0, (37) becomes the usual MDB equation

wxτ = ew + e−2w (38)

with

τ =
∫ t

(4C2
2C3)

1/3 w = v + 1

3
ln

(
2C2

C3

)
. (39)

The integrability of (37) is also obvious, not only because it is obtained from the
deformation of the Riccati equation (1), but also because (37) is really a non-local flow
equation of the potential Sawada–Kortera (SK) equation. Using the results of [13], it is
easy to prove that

K
(1)
−1 ≡

∫ x

ew(x1) dx1 (40)

K
(2)
−1 ≡

∫ x

e−2w(x1) dx1 (41)

and

K
(3)
−1 ≡

∫ x
(

ew(x1)

∫ x1

e−2w(x ′) dx ′ + 2 e−2w(x1)

∫ x1

ew(x
′) dx ′

)
dx1 (42)

are all non-local symmetries of the potential SK equation with fieldw.
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4.2. (2+ 1)-dimensional MDB equation

To get a(2+1)-dimensional MDB extension, we can make use of the following deformation
relation:

vxx + v2
x + e−v

∫ x

vy ev dx ′ − φy
φx
− φxxx

φx
= 0. (43)

When the fieldsv andφ arey-independent, (43) is reduced back to (34).
Differentiating (43) with respect to timet and using the Riccati equation (1) again leads

to

(∂x + 2vx)vxt = 6φxx + vt e−v
∫ x

vy ev dx ′ − e−v
∫ x

(ev)yt dx ′. (44)

In order to compare the result with that in the(1+ 1)-dimensional case, we rewrite (43)
and (44) as
(∂x + 2vx)(vxt − C3 e−2v − C2 ev)

= 6(hx + hvx) ev + vt e−v
∫ x

vy ev dx ′ − e−v
∫ x

(ev)yt dx ′ − 3C2 evvx

hxx + 2vxhx − e−v
∫ x

(
hx1

∫ x1

ev dx ′
)
y

dx1 = 0

(45)

by means of the transformation

φx = h ev (46)

whereC2 and C3 are arbitrary functions of{y, t}. When the fields arey-independent,
ψ = 0, C2 = C2(t), C3 = C3(t), h = C2/2, the(2+ 1)-dimensional MDB equation (45)
reduces back to the(1+ 1)-dimensional MDB-type equation (37).

5. Summary and discussion

Usually, it is quite easy to reduce a complicated theory to a simple one, for example any
quantum theory will reduce back to a classical one by ignoring the Plank constant ¯h, and
any relativistic theory will be reduced back to a corresponding non-relativistic theory by
taking the light velocity to infinity. However, the inverse procedure, i.e. the deformation of a
simple theory to a complex one, is very difficult. Fortunately, it is possible to accomplish the
inverse procedure in some special cases. For instance, the classical Yang–Baxter equation
may evolve into the quantum Yang–Baxter equation, some critical phenomenon theory
treated by conformal field theory, where the mass is zero, may be deformed to a theory for
the non-zero mass case [14] and some types of special solutions of the single sine–Gordon
equation may be deformed to that of the double sine–Gordon equation [15].

In this paper, we see that the deformation idea can also be used to obtain higher-
dimensional integrable models from lower-dimensional ones. Using some Miura-type
transformations to a trivial C-integrable model, the Riccati equationφt = φ2, we have
found some generalized(1+ 1)-dimensional and(2+ 1)-dimensional S-integrable models.
The usual(1+1)-dimensional sinh–Gordon and the(1+1)-dimensional Mikhailov–Dodd–
Boullough equations are just special cases and these equations have been extended to(2+1)
dimensions.

Reducing a higher-dimensional S-integrable model to a lower-dimensional one, one
may obtain a lower-dimensional C-integrable model. Therefore, it is possible to get an
S-integrable model from a suitable deformation of a lower-dimensional C-integrable model.



7266 Sen-yue Lou

From many different methods (such as the classical Lie approach) which can be
used to reduce many higher-dimensional integrable models to ordinary different equations,
one always obtain some trivial C-integrable models or six Painlevé reductions. So we
believe that any higher-dimensional integrable models can be obtained from several lower-
dimensional integrable models by using some suitable deformation relations. In particular,
one can use this idea to obtain(3+1)-dimensional integrable models (if they exist). Further
study on this topic continues.
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